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A COMBINED ANALYTIC AND CASE-BASED APPROACH TO THERMAL 
COMFORT PREDICTION IN BUILDINGS

Satish Kumar, Lawrence Berkeley National Laboratory, Washington, DC 20024, USA
Ardeshir Mahdavi, Carnegie Mellon University, Pittsburgh, PA 15213 USA

ABSTRACT
Despite the obvious importance of thermal comfort in
the design of indoor environment, it has not been
effectively integrated with design decision support
tools. The reasons can be attributed, in part, to an
absence of modular and flexible software architecture
that facilitates dynamic data transfer between energy
performance, lighting simulation, and thermal com-
fort modules. Research has shown that the mathemat-
ical models of thermal comfort sometimes fail to
accurately describe or predict thermal comfort in
workplace settings even when the values of environ-
mental and personal parameters are known. Thus,
there is a critical need to provide a thermal comfort
evaluation framework that, in addition to the algorith-
mic implementation of mathematical thermal comfort
prediction models, would make use of the empirical
knowledge base accumulated over the last 20 years
from field experiments around the world.

INTRODUCTION
In spite of the widespread implications of thermal
comfort on energy use and the perception of indoor
environmental quality, architects and systems
designer have tended to neglect the climatic, behav-
ioral and adaptive factors affecting thermal comfort
requirements at the time of designing buildings,
HVAC and control systems. In the process, they miss
out on a significant opportunity to save energy and
reduce associated emissions and, in most design situa-
tions, fall short of providing the optimum environ-
mental settings for thermal satisfaction. Realizing a
need for design support, ASHRAE (1994) invited
proposals to develop a tool that would provide feed-
back to designers in evaluating indoor thermal envi-
ronments. The outcome was an application (Fountain
and Huizenga 1996) that can calculate thermal com-
fort indices based on the user input of environmental
and personal parameters. Although this was a good
first step, it fell well short of providing an integrated
framework for early design support and modification
capabilities to meet the stated design objective. One
had to wait for the completion of design and then use
a separate energy analysis tool to generate input
parameters before performing a thermal comfort eval-
uation. The effort was in line with many other exist-
ing building performance evaluation stand alone
packages, its use being limited to experts seeking
design verification or for standardizing field study
calculations (de Dear and Schiller 1998).

SIMULATION ENVIRONMENT
In this paper we describe a combined analytic a
case-based approach to address these problems:

1. First, we describe how the thermal comfort mo
ule in SEMPER closely collaborates with th
energy performance, air flow, and HVAC simula
tion module to provide real-time feedback to th
designer on the status of thermal environment 
terms of numeric indicators.

2. Second, we describe the implementation of 
knowledge-based expert system support to au
ment the thermal comfort simulation engine usin
field studies data.

SEMPER—the computational framework that enabl
the implementation is an active, multi-performanc
prototype design environment (Mahdavi 1996, Ma
davi et al. 1996). It incorporates an object-oriente
space-based shared building representation, w
dynamic links to different building performance eva
uation applications. It is thereby intended to provid
computational support for the evaluation of building
across multiple performance mandates concurren
with a view toward achieving total building perfor
mance and systems integration. SEMPER’s prima
components are: i) a shared object model (SOM)
which encapsulates a space-based representation 
building; ii) various simulation modules that imple
ment individual domain knowledge using applicatio
specific object model representations of the buildin
iii) a database that stores shared object model of 
building and facilitates the derivation of domai
object models (DOM) and dynamic data transf
between them; and iv) a user interface for creating
geometric constructs and other widgets for accepti
numerical and text values.

To realize the "integration" objective, Thermal Indi-
ces for Comfort Module or TICO was designed a
part of an integral thermal design environment com
prising NODEM (energy simulation), BACH (air
flow) and HVAC module.

• TICO implements two algorithms (based o
steady-state and two-node model of human bod
that are used to predict thermal comfort under
numerical framework. Our perception of therma
comfort and the subsequent evaluation and acc
tance of indoor thermal environment depends 
the thermal exchange between human body a
1
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the environment, and the subsequent physiologi-
cal strain and perception of thermal sensation
(Fanger 1970, Gagge et al. 1971).

In order to accurately predict thermal comfort using
the two algorithms, one should be able to calculate the
values of the environmental (air and mean radiant
temperature, relative humidity, air velocity) and per-
sonal (clothing resistance and activity level) parame-
ters. The values of all the variables except mean
radiant temperature can either be specified as an input
to TICO, or derived from other thermal modules of
SEMPER. 

THE DISCREPANCY BETWEEN PRE-
DICTED AND OBSERVED VALUES
After completing a comprehensive review of the exist-
ing literature in the field of thermal comfort (Mahdavi
and Kumar 1996), it was clear that the numerical
framework for calculating thermal comfort indices
needed refinement and enrichment in order to capture
certain complex aspects of thermal comfort. The most
serious shortcoming of these models is their problems
with accurately describing or predicting thermal com-
fort in a variety of settings outside the climate cham-
ber even when the values of environmental and
personal parameters are known (de Dear and Aulici-
ems 1985, Schiller et. al. 1988, Busch 1992). The
challenge was to come up with a framework that is in
closer agreement with the field studies conducted all
over the world, but especially in the natural ventilated
buildings of tropical climates where these discrepan-
cies are most pronounced. 

Many researchers have stated the need for a knowl-
edge-based system to address the inherent deficien-
cies in the numerical models (Auliciems and de Dear
1978, Baker et al. 1994, Nicol et al. 1995, Mahdavi
and Kumar 1996, de Dear and Schiller 1998). The
development of such a framework using the results of
the field studies is an effort in this direction. The
knowledge-based support in TICO has been devel-
oped to complement thermal comfort indices derived
from the heat balance models of human body. Taking
advantage of the modular architecture of SEMPER,
and the dynamic data exchange capability accorded
by it between various modules (TICO, NODEM,
BACH, and HVAC), an active support mechanism has
been used to develop a richer set of controls with the
aim of maximizing occupant satisfaction.

A FIELD STUDY BASED EVALUATIVE 
APPROACH
This approach fine tunes the results derived from the
classical thermal comfort algorithms by working in
tandem with a database of field studies made available
under ASHRAE RP-884 (de Dear 1998). The strategy
to find one or more suitable cases from the search

domain (ASHRAE database) is outlined below. Th
pre-processing of the database was important 
abstract the relevant information required for develo
ing a strategy to offer an expert advice to the users.
Furthermore, to help the users judge the quality of t
recommendations, a rating criteria has been develop
The key variables involved in the analysis are:

1. Climate/Geographical Location: Based on the
information gathered from the weather file, th
design is grouped into one of the following nin
climatic regions of the world. The climatic region
with examples are listed below:

• Continental Subarctic (Montreal, Helsinki, etc.)

• Desert (Las Vegas, Cairo, Karachi, etc.)

• Humid Midlatitude (Beijing, Moscow, etc.)

• Humid Subtropical (Sydney, Dhaka, etc.)

• Mediterranean (Athens, Rome, etc.)

• Semi-arid Midlatitude or Semi-desert (Peshawar)

• Temperature Marine or West Coast Marine (Van-
couver, London, Melbourne, etc.)

• Tropical Savanna (Bangkok, Sao Paolo, etc.)

• Wet Equatorial (Jakarta, Singapore, Manila, , etc.

2. Environmental Control System: There is a dis-
tinct correlation between the level of thermal com
fort desired by occupants in a building and th
controls system in place for regulating the enviro
mental parameters inside a building. The thr
alternatives are: active controls, passive contro
and a combination of active and passive controls

3. Season: Hourly values of environmental parame
ters, together with thermal comfort indices for eac
zone can be further divided by season to facilitate
more detailed season-specific analysis. This opti
is provided because of the dependence of therm
comfort perception on the prevailing season. T
three seasons used in the analysis are: Summ
Winter, and Swing (Spring, Fall)

DATA  ABSTRACTION

The field studies made available under ASHRAE R
884 store large amount of data, not all of which 
directly relevant for the task at hand. After caref
consideration, key parameters that affect therm
comfort and energy performance were selected fro
this database and are shown in Table 1. Three vari-
ables DIFF (ASH - PMV) - also referred to as ∆PMV,
Tneutral (Humphreys), and PMV (Humphreys) wer
not originally in the database and were calculated 
each of the 46 field studies during pre-processing 
data. The sequence of steps that was followed is:
2
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• The six factors affecting thermal comfort, outdoor
temperature, ASH or people’s thermal sensation
on the 7-point ASHRAE scale, PMV, DIFF (ASH
- PMV) or difference between the observed value
and predicted value, and PPD are selected. Critical
information pertaining to the climate, ventilation
and season type and the year in which the study
was conducted is also selected from the list of
variables for detailed reporting purposes.

• For each study, mean values of all the identified
variables are calculated so that each study ends up
with one set of average values (the first data row
in Table 1). Total number of subjects and total
number of data points are stored for each study
(fifth row in Table 1) to be used for finding out the
statistical significance of experiments. 

• The maximum and minimum values and the stan-
dard deviation of the sample set for each of the
variables affecting thermal comfort are also calcu-
lated and stored (second, third and fourth row of
the Table 1).

• One noteworthy point about the entire analysis is
the assumption of a normal distribution of thermal
sensation votes (ASH), which is also the basis of
the PMV-PPD model.

• A new index, DPMV (ASH - PMV) is derived. The
plot in Figure 1 shows the discrepancies between
observed and predicted values. If this plot is top
heavy (DPMV is positive), then it is a clear indica-
tion that majority of the population is warmer (or
not as cold depending on the actual thermal sensa-
tion values) than what is currently being predicted

by Fanger’s PMV. By the same token, if the plot 
bottom-heavy (DPMV is negative), the averag
thermal sensation of the population is colder (or n
as warm depending on the actual thermal sensat
values) in comparison to the values predicted 
Fanger’s model. If either of these situations is tru
as happens in 39 out of 46 field studies, a cle
inference can be drawn from the field studies, and
corresponding correction factor can be applied 
the computed value of PMV. In the remaining 
cases, there is no clear indication since almost h
the population feels warmer and the other half fee
colder than what is being predicted by the mod
Instead of modifying the predicted PMV in such 
case, no correction factor is applied. Figure 2
shows the discrepancy between observed and p
dicted values using DPMV for benchmarking a
the field studies. It also shows that the discrepa
cies are more pronounced in free running buildin
(8% as compared to 16%) and the PMV mod
seem to exaggerate thermal discomfort on t
warmer side.

METHODOLOGY
The methodology adopted is outlined below:

• For a specific design situation, an hourly simulatio
is run to calculate thermal comfort indices (PMV
SET*, TSENS, DISC). Consequently, for example
an average value of PMV together with the mean
environmental and meteorological parameters a
either inherited from NODEM and other SEMPER
modules (air temperature, air velocity) or calculate

TABLE 1: Matrix following data abstraction for each field study
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0.66 1.33 0.80 -0.67 0.42 29.4 29.8 0.22 73 27.4 25.4

A
vg

.

N/Aa

a. The min., max., and standard deviation row were used for calculating "reliability index" and hence calculated for thermal comfort variables 
and not for any performance indices

N/A N/A N/A N/A 26 26.8 0.05 57.9 26.9 N/A

M
in

.

N/A N/A N/A N/A N/A 31.9 31.9 0.58 97.8 27.4 N/A

M
ax

.

N/A N/A N/A N/A N/A 1.2 1.2 0.12 6.6 0.07 N/A

S
td

.
D

ev
.

Climate System Type Researcher City Year Season Data pts.

Wet 
Equatorial

Naturally 
Ventilated

de Dear et al. Singapore 1991 Summer 583
3
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inside TICO (mean radiant temperature). For analy-
sis purposes, the mean values of the parameters are
calculated based on either the number of occupancy
hours or a 24 hour period.

• An initial screening is performed using climate
and control types to reduce the sample size of the
field studies in the database. The premise being
that both thermal comfort and energy usage are
closely linked to these two variables and at a min-
imum, a match is needed against them before con-
ducting a more complex analysis.

• From this reduced pool of field studies, a compe
sation factor ∆PMV is derived based on the rang
specified for individual thermal comfort variables
A reliability index is associated with each ∆PMV
term by following the matrix shown in Table 2.
The analysis behind the evolution of this rating 
described below.

Table 2 lays out the criteria for deriving the reliability
index of expert advice. After a match has been foun
based on control type and the climate in which th
simulated building is located, the four environment
variables under current design conditions are co
pared against the corresponding value of the varia
for the field study, and points are allocated that c
range (in case of air temperature) from a maximum
35 to a minimum of 3. This schema is based on t
multiple parametric runs of Fanger’s comfort equ
tion to evaluate the influence of the four environme
tal variables on the PMV. The points reflect th
relative importance of the variables in the determin
tion of thermal comfort. The range of rating for an
advice can vary from a maximum of 100 (best) to
minimum of 15 (worst).

This reliability index provides a quantitative frame
work to adjust the value of thermal comfort indice
(PMV, in this case). In Equation 1, ∆PMV is the
adjustment resulting from the analysis, which shou
be made to the value of PMV calculated in TICO. W1,
W2, etc. are the reliability indices and ∆PMV1 and
∆PMV2 are the compensation factors associated w
matching field studies. PMVmodified can be inter-
preted as a term that has accounted for the discr
ancy found in observed and predicted values.

(1)

(2)

This adjusted value (PMVmodified) is used as the start-
ing point for providing feedback to NODEM so tha
changes at the system level (in conjunction wi
BACH and HVAC module) or design level (SEM-
PER) can be made. 

Figure 1: ∆PMV plotted for Table 1

Figure 2: Range of discrepancy between predicted 
and observed values

50 100 150 350300 450 550400 500200 250
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0

-1

-2

-3

3

∆ P
M

V
Perceived thermal sensation 
higher than PMV

Perceived thermal sensation 
lower than PMV

Data Points

∆PM V ) > 0.2

∆PM V  < -0.2

59%

33%

F or  fie ld  stud ies in  free runn ing bu ild ings 

-0.2 > ∆PM V  > 0.2
8%

∆PM V  > 0.2

∆PM V < -0.2

44%

40%

F or  a ll fie ld  stud ies

-0.2 > ∆PM V) >  0.2

16%

TABLE 2: Reliability Index for the "expert" 
advice derived from field study data

Within ±1
Std. Dev.

Within Min/
Max value

Outside Min/
Max range

Air Temp. 35 15 3

MRT 25 10 3

Air Velocity 25 12 4

Rel. Humidity 15 8 5

Total 100 45 15

∆PMV
W1 ∆PMV1× … Wn ∆PMVn×+ +

W∑
----------------------------------------------------------------------------------------=

PMVmodified PMVsimulated ∆PMV+=
4
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BI-DIRECTIONAL FUNCTIONALITY
The results of this analysis to modify PMV can now
be used to:

1. design an indoor thermal environment that satis-
fies more people and is energy-efficient as well;

2. provide better and optimized controls for the
indoor thermal environment that will result in a
still higher satisfaction level for the occupants.

Past research has established the concept of a bi-
directional simulation environment to facilitate the
interactive and simultaneous modification of proper-
ties and the observation of changes in various build-
ing design and performance variables (Mahdavi 1993,
Mahdavi and Berberidou-Kallivoka 1993). In a bi-
directional simulation environment, designers modify
and observe both design and performance variables at
different levels of abstraction. The bi-directional
approach can increase the effectiveness of computa-
tional design support environments in at least two
ways: 1) by reducing the number of parametric varia-
tions of design variables a designer may need to
explore as the performance goal is defined at the out-
set, and 2) by enhancing the designer’s understanding
of the complex and dynamic interactions between
various design and performance variables.

In most design problems, however, the design vari-
ables are constrained by building codes, contextual
parameters, technological limitations, and designers’
preferences. A bi-directional analysis tool incorporat-
ing such constraints can support performance respon-
sive design generation and modification. In the
current situation, it entails recognizing performance
(PMV or PPD) and design variables (air temperature,
air velocity etc.) and evolving a quantitative frame-
work to implement the active support algorithm.

As noted earlier, since the performance-to-design
mapping process is an ambiguous one, the same per-
formance (e.g. optimizing PMV or minimizing PPD)
can be achieved by passive design configurations
(window dimensions/properties, ventilation or shad-
ing characteristics of design, varying thermal mass
and insulation, etc.) or evolving a control strategy for
HVAC systems (controlling the supply air tempera-
ture or regulating the temperature of radiant panels,
incorporating enthalpy controls, etc.). As a result, the
actual implementation of a bi-directional inference
tool requires a clear decision-making process that can
be applied unambiguously at any stage of design.
Instead of relying completely on a preference mecha-
nism, a hybrid approach (both preference and heuris-
tic based) that involves the formalization of various
external or internal constraints and preferences (such
as code and standard requirements or results of field

studies) is implemented here to achieve the desi
performance.

Two modes of bi-directional support have bee
implemented. In the first case, the user can spec
her performance requirements by requesting SE
PER to a) maximize thermal satisfaction and/or b)
minimize energy use or minimize total energy cost 
the current design. In such a situation, the therm
suite of applications in SEMPER takes necessa
actions and suggests design changes to the u
which would help in achieving the performanc
requirements of the design. An example that sho
how NODEM, BACH and TICO work together to
maximize thermal satisfaction is shown later.

In the second case, the inherent intelligence embedde
TICO is used to guide the HVAC module to achieve t
environmental conditions that would satisfy the perfo
mance objectives of the design. The bi-directional pr
cess, in this case, can be viewed as a two-step proces
the first step, a target value of PMV, let us call it the firs
order performance variable, is either specified by t
designer or suggested by TICO after analyzing fie
study data. The environmental parameters such as,
temperature, mean radiant temperature, relative hum
ity and air velocity, which can all be theoretically con
trolled by HVAC systems are the design variables th
can be modified to bring about the desired changes in
performance variable. A methodology outlined below
which relies on the knowledge ingrained in TICO is us
to suggest changes in the design variables that will br
the performance variable closer to its final value. In t
second step, the design variable, say air temperat
becomes the performance variable that can be modi
by the HVAC module. The HVAC module can bring
about this change by taking appropriate controls actio
such as, changing the chilled water temperature, mod
ing the economizer settings or changing the speed 
volume of supply air in the distribution system. The fir
stage of this bi-directional strategy has been imp
mented in TICO and the second step will become fun
tional once the HVAC module is integrated with th
SEMPER framework.

The first stage of the bi-directional thermal comfo
inference mechanism entails:

1. Identifying performance variables such as PMV
and PPD, and define the objective function suc
as Min (PMV) at TICO level that would drive the
optimization process.

Predicted Mean Vote (PMV): Hourly values of
PMV calculated in TICO is used to arrive at th
initial value of PMV. Subsequently, PMV in a
space is assessed by taking a mean value of 
hourly values over an entire season or year. Op
mizing PMV is the major goal of the bi-directiona
5
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analysis. A user can specify an acceptable range
for PMV in which case the bi-directional infer-
ence mechanism makes sure that the value of
PMV remains in the specified range by constrain-
ing the values of the design variables.

2. Identifying relevant design variables, such as air
temperature, mean radiant temperature, and air
velocity etc. and then assigning boundary condi-
tions and default values to them.

For each of the design variables, an allowable
range is set by defining the minimum and maxi-
mum values, and an ordered set of discrete values
within the allowable range is determined using a
fixed increment value. In the current implementa-
tion, four design variables have been defined.
Table 3 identifies the design variables along with
their boundary conditions and default values in
deriving the preference attributes for them. In the
case of air temperature, the minimum, maximum
and default values are 18°C, 30°C and 24°C
respectively as shown in Table 3. However, the
user has the flexibility of setting one or all three
values for all the design variables.

3. Deriving the normalized distance (D) attribute for
each of the variables identified above. The nor-
malized distance attribute of the design variables
is proportional to the difference between the cur-
rent and default value. As shown in Figure 3, the
normalized distance for an air temperature of
19.5°C is 0.6. This means that the air temperature
will be incremented by this value at the end of the
current iteration. In other words, the normalized
distance is a dummy attribute for calculating the
increment or decrement term for various vari-
ables. Call it I.

4. Deriving the effectiveness (E) attribute for each
design variable. Under the bi-directional approach,
the ability to bring about a change in PMV is
termed as the effectiveness of a design variable. To
derive E, an incremental change is made in the vari-
able and the change in the value of the performance
variable is recorded. The increment for each design

variable was shown in Table 3. For example, E for
air temperature is given by:

(3)

5. Deriving a relative normalized distance (Drel)
attribute for each of the four design variables. T
calculate , the normalized distance attribute
for each variable D1…Dn (calculated using the
stepped curve function derived earlier) will b
used. The  for any variable is then given by

 (4)

6. Deriving a relative effectiveness (Erel) attribute for
each of the four design variables.  (relativ
effectiveness of nth design variable), is derive
using the individual effectiveness (E) of desig
variables calculated in step 4. For any design va
able, it can now be calculated using Equation 5.

(5)

7. Calculating the preference (P) index for each of
the variables at each design stage as shown
Equation 6.

(6)

Erel and Drel for each of the design variables hav
been defined in step 5 and 6 respectively. wE and
wD are the corresponding weighting factors fo
these two attributes. For the purpose of the curre
implementation, a value of  has

been used, which means that P must lie betwee
and 1.

8. In the case of an active design, the design varia
with the highest preference index is passed to 

TABLE 3: Design variables with their min, max 
and default values

Design 
Variables Min. Max. Default Increment

Air Temp. 18°C 30°C 24°C 0.6°C

MRT 18°C 30°C 24°C 0.6°C

Air Vel. 0 0.5 m⋅s-1 0.15 m⋅s-1 0.02 m⋅s-1

Rel. Hum. 30% 70% 50% 2%

Activity N/A N/A 60 W ⋅m-2 N/A

Clothing N/A N/A 0.155 m2⋅K⋅W-1 N/A

Figure 3: Illustration showing the derivation of 
normalized distance attribute
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HVAC module. In a passive design situation, the
ordered list of design variables is passed to
NODEM. The design variable with the highest
preference index will be modified by adding or sub-
tracting I, calculated in step 3. If design limitation
does not allow NODEM to bring about the change
using the design variable with the highest prefer-
ence index then the next design variable in the
sorted list will be selected. This process will go on
till NODEM modifies one of the design variables
or a better performance cannot be achieved under
the current set of design conditions.

9. Repeating steps 3-8 till the objective function is sat-
isfied or a better performance cannot be achieved.

AN ILLUSTRATIVE  EXAMPLE

The sequence of steps for modifying PMV based on
matching field studies is shown below:

• F igure 4 sh ow s the  sch em atic  d esign  o f a  b u ild ing
a long  w ith  the  space and  g rid  in fo rm ation . N O D E M
in terac ts w ith  T IC O  by  pass in g  the  geom etric
a ttr ibu tes o f sp aces w ith  th erm al p aram eters  as
argum en ts. A s N O D E M  ite ra tes th rou gh  the  sp aces,
it calls  T IC O  and  th e  resu lting  g rid  o f m ean rad ian t
tem pera tu re  an d  PM V  is  show n in  F igure 4. T h is
cap ab il ity  to  sim u late  m ean  rad ian t tem p eratu re  and
therm al co m fo rt v a lues fo r each  ce ll in  a  b u ild ing
can  h elp  in  d ev is in g  a  b ette r con tro l stra tegy, w h ich
is o ne o f th e goa ls o f the  cu rren t ex erc ise .

Based on the methodology evolved earlier, NODEM
communicates the climatic region and the environ-
mental control system type for the current design to
TICO. In this case, they are—Climatic region: Sin-
gapore (Wet Equatorial) and Environmental Control
System: Natural Ventilation (passive).

The two parameters identified above are passed on as
arguments to the TICO module for field study evalua-
tion. It performs a search on the database and selects

the studies that satisfy the search criteria. In this ca
two matching field studies are found and their sum
mary information is displayed below in Table 5.

Once the relevant field studies have been identifie
the discrepancy between Fanger’s predicted PMV a
thermal sensation (∆PMV) experienced by people is
recorded. Table 4 shows the environmental parame
ters recorded in field studies and compares it with t
values in the current design situation. The reliabili
index developed in Table 2 for applying a ∆PMV term
to Fanger’s PMV, is shown in the 3rd column of Table
4 for the two field studies. If all the short-listed field
studies show the same ∆PMV sign, as is the case
above (both point to a negative adjustment to the si
ulated PMV), an adjustment is made based on Equa-
tion 2 on page 4.

This results in a final value of -0.60 for ∆PMV. The
simulated PMV value (1.16) must be adjusted by th
factor to take into account the results from the two fie
studies as shown in Figure 5. With the derivation of the
weighted ∆PMV term, the field study based analysi
and subsequent modification of PMV is complete.

CONCLUSIONS
It has been demonstrated that thermal comfort calc
lations can be integrated in a computer-aided arc
tectural design environment just like any othe
performance simulation and can play a major role 
optimizing energy use and enhancing thermal comf
in a building. This has been done by exploiting th
inherent structural homologies between space-ba
design representation and node-based "thermal zo
representation. The technical contribution in terms 
implementation of TICO are:

Figure 4: Results of running TICO on a building 
in Singapore in tandem with NODEM

12 m

6 
m

3 
m

C lim ate =  Singapore (Wet Equatoria l)

C ontrol =  P assive

Average PM V  for bu ild in g=  1.16

ta =  29.3oC
M RT = 29.3oC
PM V  =  1.19

ta =  29.3oC
M RT = 29.1oC
PM V  =  1.18

ta =  29.3oC
M RT =  29.2oC
PM V  =  1.19

ta =  29.3oC
M RT =  29.3oC
PM V  =  1.20

ta =  29.28oC
M RT =  29.3oC
PM V  = 1.20

t a =  29.21oC
M RT = 27.9oC
PM V  = 1.05

ta =  29.3oC
M RT =  28.8oC
PM V  = 1.14

t a =  29.2oC
M RT = 29oC
PM V  = 1.15

N

TABLE 4: Adjustment factor for PMV and the 
associated reliability indices

Comparison Averages Variance
(Min, Max, SD)

Design values

(Base Case)

ta = 29.3°C, RH = 
81%, PMV = 1.16

Not Required

Field Study 1

(RI = 90)

ta = 30.3°C
RH = 72%

ta = 28°C, 32°C, 1.0°C, 
RH = 69%, 79%, 3.15%, 

∆PMV = -0.52

Field Study 2

(RI = 80)

ta = 29.4°C
RH = 74%

ta = 26°C, 31.9°C, 1.2°C
, RH = 58%, 98%, 6.65%

∆PMV = -0.67

TABLE 5: Field studies matching the climate and 
controls specified in the current design

City Climate Control Researcher

Jakarta Wet Equatorial Passive Karyono

Singapore Wet Equatorial Passive de Dear
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1. Simultaneous evaluation of thermal and energy
performance with thermal comfort.
Using Predicted Mean Vote (PMV) to propose a
richer set of environmental control strategies that
go well beyond the conventional, mono-dimen-
sional (thermostat based) control options currently
available.

2. Field study based analytical support to fine tune
thermal environment during early design stage.
The knowledge based analytical capability of
TICO was developed using the most comprehen-
sive database of empirical experiments conducted
to evaluate indoor thermal environments. The
coupling of inferences from the field studies to
comfort evaluation using classical thermal com-
fort algorithms helped formulate a flexible frame-
work that can be used to perform a contextual
thermal comfort analysis in a variety of settings.

3 . E nhanced preference-based perfo rm ance-to -design
m app ing  in  the  dom a in  o f therm a l perfo rm ance.
A  se t o f  h eu ris tics  th a t loo k s a t th e  co m p lex  re la -
tio nsh ip  b etw een  en v iron m enta l p aram eters  an d
th e ir in f luen ce  o n  in teg ra ted  th erm al co m fort in d ex
w as u sed  to  re f in e  th e  d es ig n . T h is  w as d o ne b y
u s ing  the  k n o w led g e in g ra in ed  in  T IC O  to  reco m -
m en d  chan g es in  the  en v iron m en ta l p aram ete rs to
im pro v e in d oo r th erm al en v iron m ent.

REFERENCES

ASHRAE (1994): "Selecting and Preparing a Thermal Sen-
sation Model for Use by the Profession—781-RP."

Auliciems, A. (1981): "Towards a psychophysical model of
thermal perception", International Journal of Biometeo-
rology, vol. 25, pp. 109-122.

Auliciems, A. and de Dear R. (1978): - "Air conditioning in
Australia, I—Human Thermal Factors", Arch. Sci. Rev.
29, pp. 67-75. 

Baker, N. and Standeven, M. (1994): "Thermal Comfort in
Free Running Buildings", Proceedings of the 11th Pas-

sive and Low Energy Architecture International Confe
ence, Dead Sea, Israel, pp. 25-32. 

Busch, J. (1992):"A tale of Two Populations: Thermal Com
fort in Air-Conditioned and Naturally Ventilated Offices
in Thailand", Energy and Buildings, vol. 18, pp. 235-249.

de Dear, R. J. (1998): "A Global Database of Thermal Co
fort Field Experiments",  ASHRAE Transactions, vol.
104, Part 1. 

de Dear, R. J. and Schiller, G. (1998): "Developing an Ada
tive Model of Thermal Comfort and Preference"
ASHRAE Transactions, vol. 104, Part 1. 

de Dear, R. J. and Auliciems, A. (1985): "Thermal Neutrali
and Acceptability in Six Australian Field Studies", In
Fanger, P. O. (Ed.), Clima 2000, vol. 4, pp. 103-108,
Kongres-VVS Messe, Copenhagen. 

Fanger, P. O. (1970): Thermal Comfort Analysis and Appli-
cations in Environmental Engineering. McGraw-Hill,
New York. 

Fountain, M.E. and Huizenga, C. (1996): "A thermal comfo
prediction tool ", ASHRAE Journal, September 1996, vol.
38, no. 9, pp. 39-42.

Gagge, A. P., Stolwijk, J. A. J. and Nishi, Y.(1971): "A
Effective Temperature Scale Based on a Simple Mode
Human Physiological Regulatory Response", ASHRAE
Transactions, vol. 77, Part 1, pp. 247-262. 

Mahdavi, A. (1996): "Computational Support for Perfor
mance-based Reasoning in Building Design." CIB
ASTM-ISO-RILEM International Symposium Applica-
tions of the Performance Concept in Building. Tel Aviv,
Israel.

Mahdavi, A. (1993): "Open Simulation Environments: A
'Preference-Based' Approach", U. Flemming and S. V
Wyk (eds.), CAAD Futures ‘93, pp. 195-214.

Mahdavi A. and Kumar S. (1996): "Implications of indoo
climate control for comfort, energy and environment
Energy and Buildings, vol. 24, pp. 167-177 

Mahdavi, A. and Berberidou-Kallivoka, L. (1993). "A ‘Two-
way Inference Approach’ to Daylighting Simulation"
Journal of the Illuminating Engineering Society, Winter
1993.

Mahdavi, A., Brahme, R., Kumar, S.,  Liu, G., Mathew, P
Ries, R.,  Wong, N. H. (1996): "On the Structure and E
ments of SEMPER. Design Computation, Collaboratio
Reasoning, Pedagogy", Proceedings of the 1996 ACA-
DIA (The Association for Computer Aided Design 
Architecture) conference (Editors: P. McIntosh and F.
Ozel), Tucson, Arizona. PP. 71 - 84. 

Nicol, J. F., Humphreys, M. A. and Raja, I. A. (1995) 
“Developing indoor temperature standards for natura
ventilated buildings”, CIBSE National Conference. 

Schiller, G. E., Arens, E. A., Bauman, P. E., Benton, C
Fountain, M., and Doherty, T. (1988): "A Field Study o
Thermal Environments and Comfort in Office Build
ings", ASHRAE Transactions, vol. 94, Part 2, pp. 280-
306.

Figure 5: Modifying Fanger’s PMV with field 
studies findings to maximize satisfaction
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